

uickDraw " 3
1.5 Tips and
Tricks

Nick Thompson
Philip Schneider

How to Use QuickDraw 3D 1.5
Effectively in Your Product

Iaking advantage of 1.5 features

* Performance and tips

* Plug-in renderer support
* How to write plug-ins

* Picking

Part I:
Performance in
Your Application

Philip Schneider
Apple Computer

Performance and General Tips

Making best possible use of QuickDraw 3D 1.5
* Choosing the best geometry types for
your application
* Structuring your application effectively
* Tuning
* Finding out the library version

Choosing Appropriate Geometry

| Characteristic

PolyhedronTrimesh Mesh Trigrid
* | Memory usage |very good poor very good
File space usage \very good very good | very good
| Rendering speed good very good |good good
. Topological obj \poor impossible |very good | impossible
. edifing
Topologzcal fair impossible | impossible
dam struct ed. no data str.| fx topology
omelric data very good |very good impossible very good

-

?ﬂtstmcmre editing

Efficient Use of Groups

* Group traversal can introduce overhead
* Groups push and pop
— The saving and resortation of state data will
introduce overhead

* It may be more efficient to implement your
own data structures

*...And/or use immediate mode

— You can avoid this by using the
kQ3DisplayGroupStateMaskIsInline
state flag

Setting the In-line Flag

kQ3 DisplayGroupStateMasklsInline

* Use the API call Q3DisplayGroup_SetState

* Beware

— If your group contains transforms or sets
colors, this may not help you

— These things set state, this may not be what
you want

Making Use of
Hardware Acceleration

IR auntomatically uses H/W, but...

* I you use a pixmap based draw context
acceleration may not work

* Because many cards only accelerate
Macintosh draw contexts

— So only use pixmap draw contexts for
operations that absolutely require them
* Compositing, other post processing, and

printing are the best candidates for a
pixmap draw context

Other Hints and Tips

* Backface culling

— Set this on to speed up drawing
* Number of lights

— More lights will slow drawing down
* Quality fallbacks

— Draw in edge mode during interactions
— Draw flat shaded during interactions

Finding Out the Library Version

Returning the “release” versions...

* We introduced a new way to determine
which version of both QuickDraw 3D

and the QuickDraw 3D Viewer Lib
are installed:

— Q3ViewerGetReleaseVersion
— Q3GetReleaseVersion
* Both return the version in a long

— Similar to ‘vers’ format—e.g. 0x01518000
==2> 1.5.1 release

QuickDraw 3D RAVE

Unified access to HW acceleration

* It your application needs high
performance rendering

— For example:
* Games, simulations, real time applications

* You may want to take a look at RAVE

Bentley

Chris

neer

i

RAVE Eng

Hints and Tips for ATI

* By-pass buffer clear to boost performance

* Avoid cost of kQAButferComposite
notification method

* Cache context work around for GWorlds

— Call QADrawContextNew() with
kQAContext Cache flag

— Register for kQAMethod BufferComposite
notification method

— Post process rendered buffer and
use CopyBits() @.5

274

Notification Callback Methods

TOANoticeMethod noticeMethod:;
noticeMethod.TOABuf ferNoticeMethod = c¢Back:

OASetNoticeMethod(
context,
kOAMethod BufferComposite,
noticeMethod,
NULL);

void cBack(
const TOADrawContext *drawContext,
const TQOADevice buffer,
const TOARect *dirtyRect,
void *refCon)

/* post process, CopyBits */ .’Afz,

7

More Hints and Tips

For ATT Technology’s 3D RAGE

* Support for rectangular mip maps

* Add and delete textures between
RenderStart() & RenderEnd()

* Looking forward... RAGE PRO

— Strips and fans

— VQ texture compression
— Texture compositing

— LOD biasing

ATI Developer Support Program

Advanced technology seeding

* Developer purchase program

— Send email to devrel(@atitech.ca
* Support - SDKs - Sample code

— http://www.atitech.ca
* Co-marketing opportunities

~ Part II: Plug-in
- Renderer Support

Nick Thompson
Apple Computer

Why Use Plug-in Renderers?

Adding value to your product

* Allow you to leverage the Work of other

Image ©1997 LightWork Design Ltd.

Image couctasy Kavim Mathews, @997 Actifice.

Using Plug-in
Renderers

Scott Burgess
Electric Cafe

Electric Cafeé

ModelShop 3.0 and ModelShop VR

* ModelShop VR

— Supertfast, using TriMesh and Macintosh
Draw Context

* ModelShop 3.0
— Large projects and photorealism

* Public beta of ModelShop VR at
http://www.eleccafe.com

Using Plug-in
Renderers in Your Product

Classification

* Plug-in renderers can be classified in
two ways
— Interactive

* ThinkFish, Apple Interactive,
Apple Wireframe

— Non-interactive

* LightWork Design “SuperLite” renderer
* Ray Tracers, Per-pixel Shading renderers

Presenting an Interface

* The interface depends on the
renderer type

* A renderer registers whether it is
interactive or non-interactive

* You can determine if the renderer is
interactive using

— Q3Renderer IsInteractive(renderer) ;

Ul Suggestions

* If the renderer is interactive add it to a
renderer menu

* If the renderer is non interactive

— Provide a mechanism to render the data
into a new window

— Or a window that the user is not able to
interact with

Ul Suggestions

* If the user can manipulate the view
— Use an interactive renderer for that view

* Use an interactive view to set
up orientation

— Then render into a separate window using a
non-interactive renderer

— ... or write to file

— ... or disallow manipulation

* Fall back to last used interactive renderer if
the user clicks in the window

Finding Out Which
Renderers Are Installed

* Query the object system using
— Q30bjectHierarchy GetSubClassData() ;

— Pass in object type you want to query for:
* In this case “kQ3SharedIypeRenderer”
— Pass in a struct of type TQ3SubClassData
* Free up the TQ3SubClassData using

— Q30bjectHierarchy EmptySubClassData

ja
Traversing the Sub-class
L \d d
Data—*very* simplified!!
P30bjectHierarchy GetSubClassData(
k93SharedTypeRenderer, &subClassData):
classPointer = subClassData.classTypes:;
for(i = 0; i < subClassData.numClasses; i++) {
if(*classPointer != kQ3RendererTypeGeneric) {
P3RendererClass GetNickNameString(
*classPointer, objectClassString):
if(objectClassString[0] == ‘\0’) ¢
/*renderer didn’t provide name,use class
name* /
P30bjectHierarchy GetStringFromType(
*classPointer, objectClassName):
/* use the string for whatever */

classPointexr++

¥
P30bjectHierarchy EmptySubClassData(&subClassData) :

Getting the Name of the Renderer

* Renderer Nicknames

— Used for user interface elements
* Menus, dialogs etc.

— Are localizable

— Available from 1.5.1 onwards

* Use Q3RendererClass GetNickNameString

* Check the library is version 1.5.1 before
calling this function

Renderer Preferences

Allow you to customize the renderer settings
* Allow you to adjust the options for
a renderer

* You can query the current renderer

— Use Q3Renderer HasModalConfigure
* To determine if it has a preferences dialog

Renderer Preferences
Example with LightWorks SuperLight renderer

/* Put up the configure dialog */
i1f (Q3Renderer HasModalConfigure({gd3dRenderer))
e /* enables a movable modal with event handler

x
gd3dAnchor.clientEventHandler = HandleEvent ;
gd3dstatus =
Q3Renderer ModalConfigure
gd3 dRenderer, o of
qgd3dAnchor, S ESTAA '}g L;\\;
&gd3dCanceled); UGHI " RKS i
hitp : 7/ /www . lightwork.com/
Use the code abov‘e to e ni
enable the prefs dialog S

X] Anti-aliasing

Your HandleEvent proc is X Transparency
called to handle events

[cancel | |

Renderer Preferences

* It you pass NULL in the
clientEventHandler field

— You get a modal prefs dialog
* If you pass in an event handler

— You get moveable modal dialog

— Remember to:

* Disable all but edit menu and Apple
menu items

* Event handler is only called if plug-in doesn’t
handle the event

Saving and Restoring
Renderer Preferences

* Q3Renderer_GetConfigurationData

— Gets private renderer configuration data

* Which can be saved in a preference

* Applications should tag this data with the
Renderer’s object name.

* Q3Renderer_SetConfigurationData
— Use this to restore renderer settings

Dair Grant
LightWork Design Ltd

LIGHTWORK 7\

LightWork Design Superlite
.- * SuperlLite renderer is on sale

— Macintosh and Windows

* Developers should provide support for
plug-in renderers in their applications

* Bundling for SuperLite is available

* Developers can also license higher
end versions

* http://www.lightwork.com

. 4
—— \ '.
o o " g
s PR
-

Part III—Plug-in Basics

Houw to write plug-ins for QuickDraw 3D

Plug-in Basics

* Plug-ins can be used to extend the
functionality of Quickdraw 3D

* In 1.5 the following types of plug-ins
are supported

— Elements/Attributes
— Groups
— Renderers

* Support for plug-in shaders is planned for
a future release

Commonality

Features common to all plug-ins

* Loading/Initialization

— On Mac OS this is handled by CFM

— On Windows by the DLL loader

— You need to supply a registration function
* Metahandler

— Method dispatcher for the plug-in class
* Termination

Loading and Initialization

Seiting up your plug-in

* For Mac OS

— Packaged as a CFM shared library
* Creator ‘Q3XT’ type ‘shlb’
* For Windows
— The file extension must be .Q3X

2 1 °Entry points and exit points map to
x functions in the shared library

gﬁ: G

1

k3
b4
i
¢

Setting Up a Plug-in

CodeWarrior Project Settings Dialog

Project Settings

< Editor Project Type: | Shared Library w |

Custormn Keywords .
< Project r Shared Library Info:
Access Paths
Build Extras
PPC Project
Target
7 Language Settings
C/C++ Language
C/C++ Warnings
PPCAsm
Rez
7 Code Generation
PPC Processor
PPC Disassembler
7 Linker
PPC Linker
PPC PEF

| File Name NameAttribute Plug-in

Creator

[Factoru Settings] [Revert Panel]

Mac OS Initialization Function

Gets called by CFM

* You supply a registration function that is
called later when QD3D loads the
extension

/* Name attribute CFH init routine */
OSErr NameAttribute ConnectionInitializationRoutine(
InitBlockPtr initBlock)

TQ3XSharedLibraryInfeharedLibraryInfo;

sharedLibraryInfo.registerFunction = NameAttribute Regist
sharedLibraryInfo.sharedLibrary =

{(unsigned long)initBlock—>connectionID;
Q3X5SharedLibrary_ Register(&sharedLibraryInfo);

pSharedLibrary = (unsigned long)initBlock—>connectionlID;
return noErr;

Windows Initialization Function

* Similar to Macintosh, but both
initialization and termination are handled
in the DLL Main entry point for the library

Summary of
Initialization and Loading

* Register the shared lib with QuickDraw 3D
* QuickDraw 3D handles loading of library

* Register function

— In the example this was
NameAttribute Register()

— QuickDraw 3D calls this function when it is
ready to initialize your plug-in

Metahandler

The plug-in method dispatcher

* Each class of plug-in has a set of methods
that get called via the metahandler

* These methods vary depending on
whether your plug-in class is

— Element, Attribute, Group, or Renderer

* The method handler is essentially a big
switch statement

— Returning (usually) function pointers based
on the set of constants passed in

Metahandler

Example

b vd static TQ3XFunctionPointer NameAttribute HetaHandler (
o TQ3XHethodType methodType)
| {
s¥itch (methodType) {
case kQ3XHethodTypeObjectClassY¥ersion :
return (TQ3XFunctionPointer)
Q3 OBJECT_ CLASS_ YERSION(
major¥ersion, minoryYersion),;
case kQ3XHethodTypeObjectTraverse
return (TQ3XFunctionPointer)
NameAttribute Traverse;
/* a bunch of other method dispatchers ... */
default:
return (TQ3XFunctionPointer) NULL;

Metahandler

Notes

* The example shows three things:
— Versioning
— Returning a method pointer
— Default behavior

* There are handlers that must be defined
for each specific type of plug-in

— See the documentation for details

Versioning

You should supply a plug-in version

* CFM will be used to decide which of
identical plug-ins to use

— Based on the fragment name
* Supply a version

— So that QuickDraw 3D is able to discern the
correct version for your plug-in

— If no version is supplied, the default is to
set the version to “0.0”

— Only the highest version will be loaded

Returning a Method Pointer

* Check the header files for the format
of a function associated with a particular
constant

* For example:

¥define kQ3XHethodTypeObjectTraverse

Q3 _METHOD _TYPE('t’,’'r’,’v’,’s’) /* byte count */
Fx
* TQ3X0ObjectTraverseHethod
F
* The “data” is a pointer to your internal element data
x
* The viev¥ is the current traversal vievw.
x/
typedef TQ3Status (QD3D _CALLBACK *TQ3XObjectTraverseHletho«
TQ30bject object,
void *data,

TQ3¥ievObject vievw);

Returning a Method Pointer

* Irrespective of the format of the return

value, it is always cast to type
TQ3XFunctionPointer

* Some constants return a value NOT a
function pointer

— Version
(kQ3XMethodTypeObjectClassVersion)

— IsDrawable
(kQ3XMethodTypeObjectIsDrawable)

Default Behavior

* In the case where you don’t supply a
method, return NULL

* If appropriate the default method gets
called if you return NULL

Termination on Mac OS

Called by CFM

* On Windows the DLL Main function gets
called with DLL_PROCESS DETACH

* On Mac OS you need to supply this:

void NameAttribute ConnectionTerminationRoutine (void)

{
TQ3Status theStatus ;

if{ pSharedLibrary != NULL) {
Q3XSharedLibrary_ Unregister(pSharedLibrary);
pSharedLibrary = NULL;

}

theStatus = NameAttribute Unregister() ;

Elements and Attributes

Introduction

* Used to add custom data to QD3D objects
* See develop Issue 206

* What’s the difference between them

— Attributes can be inherited, elements
are not

* There is a sample plug in attribute on the
conference CD

Registration

Called byQuickDraw 3D

* This is the function registered earlier

TQ3Status NameAttribute Register(void)
{

1

TQ3ElementType
myElementType = kElementTypeName ;

pNameAttributeClass =
Q3XElementClass_Register(
&myElementType,
kElementTypeNameString,
sizeof (TQ3StringObject),
NameAttribute HetaHandler);

if (pNameAttributeClass == NULL)
return kQ3Failure;

return kQ35Success;

Registration

Important note

* Registration is by name

— The binary type for your class is assigned at
runtime, and returned to you in the
registration function

* Use this returned type in calls like
Q3Set_Add()

* Either save a reference to the type
returned by the register call

* Or use Q3XObjectClass_Getlype to get the
type back from the system

Attribute/Element Methods

* For a description of the methods an
attribute can implemented see pages
6 through 7 of ‘Adding Custom Data to

QuickDraw 3D Objects” in develop
issue 20

* A copy of this is on the conference CD

Name Space Changes

Changes from develop and the Book

* If you are reading the documentation for
attributes note the following changes
(there are more than this, but this will give
you the general idea)

% TQ3FunctionPointer ————> TQ3XFunctionPointer

TQ3HethodType ———> TQ3XHethodType
Q3¥iev_Submit¥riteData ———> QQ3X¥iev_ Submit¥riteData
kQ3HethodTypeObjectTraverse ——> kQ3XHethodTypeObjectTraverse
kQ3HethodTypeObjectReadData ——> kQ3XHethodTypeObjectReadData
kQ3HethodTypeElementCopyadd ———> kQ3XHethodTypeElementCopyidd

kQ3HethodTypeElementCopyGet ——> kQ3XHethodTypeElementCopyGet

Registering a Plug-in Group

This applies to plug-in renderers foo

* First define your unique object type by
using “Q3 OBJECT T YPE” macro

* Declare a data structure to store private
data for your plug-in

¥define kQ3XXXGroup
Q3_OBJECT_TYPE(X', 'X’,’X’,’G")

typedef struct XXXGroupPrivate{
f// XXX Private Data
} XXXGroupPrivate;

TQ30bjectClass XXXGroupClass;

Registering a Plug-in Group

* Different registration API call than for
Elements and Attributes

fpp
TQ3Status XXXGroup_ Register(void)
B3 XXXGroupClass =
% Q30bjectHierarchy RegisterClass(
(kQ3GroupTypeDisplay, // Parent Type
kQ3XXXGroup, /{ Group Type
“XXXGroup”, // Group Name
XXXGroup HMetaHandler, // HetaHandler
NULL, f//{ YirtualHetaHandler
0 // Hethods Size

sizeof (XXXGroupPrivate))/ Instance Size

if (XXXGroupClass == NULL)
return kQ3Failure;

return kQ35Success;

Plug-in Examples
and Documentation

* On the SDK and the WWDC CD

— Plug-in attribute: ‘name’

— 2 Plug-in renderers (Simple renderer
and Wireframe)

— Plug-in group: display proxy group (DPG)

* This is a simple level of detail group

Part IV—Picking With 1.5

Managing aser selection with QuickDraw 3D

Types of Pick Objects

Window Point Window Rectangle

Kinds of Pick Detail
Information Calculated...

* TQ3PickDetail specifies information
calculated per hit:

— Pick ID

— Group hierarchy path
— Reference to object hit
— Local to world matrix

Kinds of Pick Detail
Information Calculated

* TQ3PickDetail (cont)
— XYZ intersection point
— Distance from camera
— Surface normal vector
— Shape part
— Surface UV parameterization

Geometry Shape Pick Parts

1Q3PickParts style specifies parts tested

* Object Level

— Pick intersects a geometry only
once anywhere

* Part Level

— Pick intersects several parts of the
same geometry

— Object / Face / Edge / Vertex or
any combination

Picking Process

* 1. Setup and create a pick object
* 2. Submit objects in a picking submit loop
* 3. For each hit

— Get pick detail information
— Use this information for interaction

* 4. Specify a new pick location
— (Repeat steps 2 through 4)
* 5. Dispose the pick object

Pick Setup Information

* Choose type of pick object
- * Initial pick location
* Pick detail information

* Sorting method
— Near to Far / Far to Near / None
* Maximum number of hits

* Vertex and edge tolerances

Picking Submit Loop Example

- TO38tatus SubmitPickObijects(TQ3ViewObject wview,

e TO3PickObject pick,
TOQ3GroupObject group,
TQ38tyleObject subDivStyle)

TO3ViewStatus viewStatus;

Q3View StartPicking(view, pick);

do {
Q3Style Submit(subDivStyle, view);
Q3DisplayGroup Submit{group, wview);
viewStatus = Q3View EndPicking({wview);

L while (viewStatus == kQ3ViewStatusRetraverse);

return (viewStatus == kQ3ViewStatusDone) 7
kQ38uccess : kQ3Failure;

Pick Hit List

* Hits accumulate in the pick object
and are retrieved after performing a
submit loop

* A hit contains the pick detail information
for a single intersection

* The maximum number of hits to be
returned are specified at setup

* Hits are referenced by index

* Hits are sorted relative to distance from
the viewer

Querying a Pick
for Hits Example

Get intersection point in world space

e
TQ3Status Get¥VorldPoint(TQ3PickObject pick,
TQ3Point3D *yorldPoint)
{ TQ3Status status;
t unsigned long numHits;

A

Q3Pick GetNumHits(pick, &numHits);

if (numHits == 0)
return kQ3Failure;

status = Q3Pick_GetPickDetailData(
pick,
0,
kQ3PickDetailHaskXY¥Z,
vorldPoint);

return status;

Querying a Pick
for Mesh Shape Parts

TQ3Status ChangeHeshPart(TQ3PickObject pick)
{

1

TQ3ShapePartObject shapePart;
TQ3HeshComponent comp ;

status = Q3Pick_GetPickDetailData(
pick,
0,
kQ3PickDetailHaskShapePart,
&shapePart) ;

if (shapePart == NULL || status == kQ3Failure)
return kQ3Failure;

status = Q3HeshPart_GetComponent(shapePart, &comp);

Querying a Pick
for Mesh Shape Parts

|

sv¥itch (Q3HeshPart GetType(shapePart)) {
case k(Q3HeshPartTypeHeshFacePart:
DoFace(component, shapePart) ; break;

case k(Q3HeshPartTypeHeshEdgePart:
DoEdge (component, shapePart) ; break;

case kQ3HeshPartTypeHesh¥ertexPart:
DoYertex(component, shapePart); break;

}

return kQ3Success;

Summary—The Three Ps

* Performance
— Making the right design decisions
— Consider writing to RAVE
* Plug-in support
— Developer opportunity providing plug-ins

— Makes vour application more desirable for
your customers

* By adding valuable features that YOU DON’T
HAVE TO IMPLEMENT YOURSELF!!

* Picking

SN A

S SN
o

